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Why is aµ special?

µR µL

CP- and Flavour-conserving, chirality-flipping, loop-induced

compare: EDMs,
b → sγ

B → τν

µ → eγ

EWPO
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Exclusion by LHC-data/EDMs/LFV
depends on assumptions!
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Why isn’t new physics ruled out by LHC?

Indeed, robust bounds on new coloured particles with simple decays, also
on Z’ with SM-like couplings

But consider e.g. sleptons, charginos,
neutralinos

very low σ ⇒ low mass reach

σLHC8(ml̃R
= 370GeV) = 0.2fb

σLHC8(mχ̃± = 450GeV) = 10fb

analysis needs visible, hard leptons ⇒
simple decays and large mass splittings

bad but possible in reality:
χ0
2 → χ0

1 + H, H → bb̄ essentially invisible
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[arxiv:1403.5294]

ATLAS l̃R search,
assuming only two
new particles,

decay l̃R → lχ0
1

σ is very low

no exclusion above
250 GeV

no exclusion if mass
gap l̃R − χ0

1 < 80
GeV
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[Calibbi, Galon, Masiero, Paradisi, Shadmi, arxiv:1502.07753]

now three particles,
l̃R , B̃, H̃

current LHC exclusion
covers only masses
below 250 GeV and
mass gaps above 80 GeV

even future LHC
exclusion only twice as
high
Compare: [Fargnoli, Gnendiger, Passehr,
DS, Stöckinger-Kim ’13] motivated BM4:
µ = −160,M1 = 140,mµ̃R

=

200,M2 = mµ̃L
= 2000GeV , tan β = 50

this will remain allowed
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[Cahill-Rowley, Hewett, Ismail, Rizzo, arxiv:1407.4130]

SUSY models with
“low fine tuning”
t̃ > l̃ > ˜χ0,±

only small region is
completely excluded

all neutralinos and
charginos can be
light
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Hence new physics is still possible!

in particular, new particles can still give large aµ

however, it is true that some scenarios are excluded, and specific
(sometimes non-traditional) scenarios are now better motivated
(e.g. very large or very small mass splittings)

similar for other observables:

Bs → µµ rules out SUSY with very large tanβ and small CP-odd
Higgs mass

EDMs rule out new physics with small masses and large complex
phases
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Why new physics?

Big questions. . . point to (TeV scale) new physics
EWSB, Higgs, scalar particle?

hierarchy MPl/MW ? Naturalness?

Dark Matter?

Baryon Asymmetry?
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Grand Unification?
Flavor Structure?

Many ideas for new fundamental theories, principles, interactions
Need complementary experiments to discover and scrutinize new physics
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Dominik Stöckinger Overview: New Physics in General



Outline

1 Isn’t New Physics ruled out by LHC? Still motivated?

2 Overview: New Physics in General
Simple classification of models
Wide range of possibilities, complementarity

3 Representative Examples
Illustrate wide range of possibilities
Different chirality flipping mechanisms
Different numbers/types of particles
Complementarity to LHC, LFV

4 Conclusions
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Explain new physics contributions to aµ

Loop contributions to aµ, mµ related to source of chirality flips

µR µL

aµµ̄Lσ
µνµR×〈H〉

µR µL

mµµ̄LµR×〈H〉
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Very different contributions to aµ: classify ∝ C

µR µL

O(C )
(mµ

M

)2

µR µL

C =
δmµ(N.P.)

mµ
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Very different contributions to aµ: classify ∝ C

µR µL

O(C )
(mµ

M

)2

µR µL

C =
δmµ(N.P.)

mµ
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O(1)

O( α
4π . . .)

O( α
4π ) Z ′, W ′, UED, Littlest Higgs (LHT). . .

Dominik Stöckinger Overview: New Physics in General
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O(1)

supersymmetry (tanβ), unparticles
[Cheung, Keung, Yuan ’07]

O( α
4π . . .) extra dim. (ADD/RS) (nc). . .

[Davioudasl, Hewett, Rizzo ’00]

[Graesser,’00][Park et al ’01][Kim et al ’01]

O( α
4π ) Z ′, W ′, UED, Littlest Higgs (LHT). . .
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O(1) radiative muon mass generation . . .
[Czarnecki,Marciano ’01]

[Crivellin, Girrbach, Nierste ’11][Dobrescu, Fox ’10]

supersymmetry (tanβ), unparticles
[Cheung, Keung, Yuan ’07]

O( α
4π . . .) extra dim. (ADD/RS) (nc). . .

[Davioudasl, Hewett, Rizzo ’00]

[Graesser,’00][Park et al ’01][Kim et al ’01]

O( α
4π ) Z ′, W ′, UED, Littlest Higgs (LHT). . .
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Very different contributions to aµ: classify ∝ C

µR µL

O(C )
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O(1) radiative muon mass generation . . .
[Czarnecki,Marciano ’01]

[Crivellin, Girrbach, Nierste ’11][Dobrescu, Fox ’10]

supersymmetry (tanβ), unparticles
[Cheung, Keung, Yuan ’07]

O( α
4π . . .) extra dim. (ADD/RS) (nc). . .

[Davioudasl, Hewett, Rizzo ’00]

[Graesser,’00][Park et al ’01][Kim et al ’01]

O( α
4π ) Z ′, W ′, UED, Littlest Higgs (LHT). . .

≪ α
4π dark photon . . .

Dominik Stöckinger Overview: New Physics in General



Outline

3 Representative Examples
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Navigate through examples

SM weak

≤ two new particles (structure as for SM weak, easy to estimate)

≥ three new particles
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Navigate through examples

SM weak

µR µLµL W

νL

×〈H〉

≤ two new particles (structure as for SM weak, easy to estimate)
model-”independent” study [Freitas, Kell, Lykken, Westhoff ’14] and other models

µR µLµL A′

µL

×〈H〉

µR µLµL φ

ψ

×〈H〉

≥ three new particles
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Navigate through examples

SM weak

µR µLµL W

νL

×〈H〉

≤ two new particles (structure as for SM weak, easy to estimate)
model-”independent” study [Freitas, Kell, Lykken, Westhoff ’14] and other models

µR µLµL A′

µL

×〈H〉

µR µLµL φ

ψ

×〈H〉

≥ three new particles ⇒ (ab)use SUSY-scenarios as simplified models

µR µLν̃L

H̃+
u W̃+

×〈H〉
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Model-”independent” analysis of ≤ two new fields [Freitas, Kell,
Lykken,
Westhoff ’14]

SM: doublet L =

(

νL
µL

)

, singlet µR , doublet H

µR µLµL W

νL

×〈H〉Chirality flip: L̄HµR → 〈H〉µ̄LµR
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Model-”independent” analysis of ≤ two new fields [Freitas, Kell,
Lykken,
Westhoff ’14]

New fields: either doublets, singlets or triplets, no flavour violation

µR µLµL A′

µL

×〈H〉

µR µLµL φ

ψ

×〈H〉

⇒ no additional chirality flip! Behaviour like aSM, weak
µ
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Model-”independent” analysis of ≤ two new fields [Freitas, Kell,
Lykken,
Westhoff ’14]

New fields: either doublets, singlets or triplets, no flavour violation

µR µLµL A′

µL

×〈H〉

µR µLµL φ

ψ

×〈H〉

⇒ no additional chirality flip! Behaviour like aSM, weak
µ

large contributions need M < O(500) GeV and gNew = O(1)

Constrained by LHC and LEP
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Model-”independent” analysis of ≤ two new fields [Freitas, Kell,
Lykken,
Westhoff ’14]

New fields: either doublets, singlets or triplets, no flavour violation

µR µLµL A′

µL

×〈H〉

µR µLµL φ

ψ

×〈H〉

Some scenarios still viable, will be tested at LHC14
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What about dark photons?

What about two-Higgs doublet model?
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Dark photon: “second most promising scenario” [Marciano]

very light/weakly interacting ⇒ not covered by previous analysis

µR µLµL A′

µL

×〈H〉

  10

  10

   10

   10

m
100 MeV10 MeV 500 MeV

Excluded by

muon g-2

|muon g-2|<2σ

Excluded by

electron g-2 vs α

−3

−4

−5

−6

V

κ
2

[Pospelov 08]theory motivation:
new U(1) gauge group (from GUTs, . . . )
could explain: dark matter, (g − 2)µ
(for very specific coupling/mass range)
aµ-explanation now almost
completely excluded!!
generalization: “dark Z”
with more general couplings,
also strongly constrained
[Davoudiasl,Lee,Marciano’14][Izaguirre et al ’13]

[A1/Mainz ’14]
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Two-Higgs Doublet Model: one field but tricky behaviour

Second Higgs doublet well motivated in theory

Promising case: H1 couples to leptons, H2 ≈ HSM to quarks (type X)
recent analyses: [Broggio, Chun, Passera, Patel, Vempati ’14, Ilisie ’15]

Not covered in previous analysis for two reasons:
1 no fields with vacuum expectation value
2 only one-loop contributions to aµ
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Two-Higgs Doublet Model: one field but tricky behaviour

Second Higgs doublet well motivated in theory

Promising case: H1 couples to leptons, H2 ≈ HSM to quarks (type X)
recent analyses: [Broggio, Chun, Passera, Patel, Vempati ’14, Ilisie ’15]

1 H1 gives mass to leptons mµ,τ = yµ,τ 〈H1〉
2 and appears as CP-odd scalar MA ≈ MH1

µR µLµL

H1 γ

τ

×〈H1〉
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Two-Higgs Doublet Model: one field but tricky behaviour

Second Higgs doublet well motivated in theory

Promising case: H1 couples to leptons, H2 ≈ HSM to quarks (type X)
recent analyses: [Broggio, Chun, Passera, Patel, Vempati ’14, Ilisie ’15]

1 H1 gives mass to leptons mµ,τ = yµ,τ 〈H1〉
2 and appears as CP-odd scalar MA ≈ MH1

µR µLµL

H1 γ

τ

×〈H1〉

∝
yµyτmτ

M2
H1

≈
tan2 βy2µ,SMmτ

M2
H1

explanation:

tanβ =
〈H2〉

〈H1〉
≈

〈HSM〉

〈H1〉
≫ 1

yµ,τ =
mµ,τ

〈H1〉
≈ tanβyµ,τ ,SM
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Two-Higgs Doublet Model: one field but tricky behaviour

Second Higgs doublet well motivated in theory

Promising case: H1 couples to leptons, H2 ≈ HSM to quarks (type X)
recent analyses: [Broggio, Chun, Passera, Patel, Vempati ’14, Ilisie ’15]

1 H1 gives mass to leptons mµ,τ = yµ,τ 〈H1〉
2 and appears as CP-odd scalar MA ≈ MH1

µR µLµL

H1 γ

τ

×〈H1〉

Viable region MA ∼ 50 GeV, tanβ ∼ 100 not excluded by anything
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Models with ≤ two new fields already rich:
light or heavy new particles, constrained/testable by LHC and/or
low-energy data
further models: Z ′ with Lµ − Lτ , dark Z (mass mixing), non-MFV models
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SUSY and the MSSM — four examples

MSSM:

free parameters: p̃ masses and mixings, µ and tanβ
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SUSY and the MSSM — four examples

MSSM:

free parameters: p̃ masses and mixings, µ and tanβ

aSUSY
µ ≈ 12 × 10−10 tanβ sign(µ)

(

100GeV

MSUSY

)2

SUSY could be the origin of the observed (30 ± 8)× 10−10 deviation!
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Chirality flip and tan β-enhancement

µR µLν̃µ

H̃+
d W̃+

H̃+
u W̃+

×〈Hu〉

Two Higgs and Higgsino doublets:

tanβ = 〈Hu〉
〈Hd 〉

, µ = Hu − Hd transition

Large Yukawa as in 2HDM

mtree
µ = yµ〈Hd 〉

Diagram enhanced by Yukawa and large “other” vev

∝ yµ 〈Hu〉 µ = mµ tanβ µ → aSUSY
µ ∝ tanβ sign(µ)

m2
µ

M2
SUSY

enhancement ∝ tanβ = 1 . . . 50 (and ∝sign(µ))
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1st example: large masses, small aµ
Obviously, the LHC rules out specific SUSY models
as explanations of g-2. Consider one of them, the
“Constrained MSSM”. ø ø
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1st example: large masses, small aµ
Obviously, the LHC rules out specific SUSY models
as explanations of g-2. Consider one of them, the
“Constrained MSSM”.
Assumption at GUT scale:

m0 = universal scalar mass

m1/2 = universal fermion mass

α = universal gauge coupling

⇒ physical masses strongly correlated
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1st example: large masses, small aµ
Obviously, the LHC rules out specific SUSY models
as explanations of g-2. Consider one of them, the
“Constrained MSSM”.
Assumption at GUT scale:

m0 = universal scalar mass

m1/2 = universal fermion mass

α = universal gauge coupling

⇒ physical masses strongly correlated

Observed Higgs mass
needs very heavy stops
⇒ all new scalars heavy (multi-TeV)

LHC requires heavy gluinos
⇒ all new fermions heavy

hence, aµ contributions negligible
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1st example: large masses, small aµ
Obviously, the LHC rules out specific SUSY models
as explanations of g-2. Consider one of them, the
“Constrained MSSM”.
Assumption at GUT scale:

m0 = universal scalar mass

m1/2 = universal fermion mass

α = universal gauge coupling

⇒ physical masses strongly correlated

Observed Higgs mass
needs very heavy stops
⇒ all new scalars heavy (multi-TeV)

LHC requires heavy gluinos
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=126 GeV
h

CMSSM, LHC, m

σ|Meas.-Fit|/ 
0 1 2 3

 

 

 

 

 

 

 

 

 

 

  SM
µ - aµa  0.2)E-9± 0.8 ±(2.9 0.3E-9

)γ s→BR(b  0.23)E-4± 0.26 ±(3.55 2.88E-4

)ντ →BR(B  0.39)E-4±(1.67 0.99E-4

)-µ+µ →
s

BR(B  0.30)E-9±<(4.50 3.61E-9

)-1 (pss m∆  5.20± 0.12 ±17.78 20.58
l
effθ2sin  0.00021±0.23113 0.23138

 (GeV)Wm  0.010± 0.015 ±80.385 80.386

 (GeV)hm  3.0± 2.0 ±126.0 124.4

LHC
2hCDMΩ  0.0112± 0.0035 ±0.1123 0.1112

) (pbSIσ 2.44E-11

=126 GeV
h

CMSSM, LHC, m
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2nd example: small masses, large aµ

“standard”

µR µLν̃µL

H̃+
d W̃+

H̃+
u W̃+

×〈Hu〉

∝ µ for µ → ∞

µL µRµ̃L µ̃R

B̃

×〈Hu〉

µL µRµ̃R

H̃d B̃

H̃u B̃

∝ other sign!

×〈Hu〉

large aµ for mweak ∼ 100 . . . 400 GeV
[Fargnoli,Gnendiger,Passehr,DS,Stöckinger-Kim ’13]

evade LHC by mcoloured ≫ 1 TeV

can carry out dedicated LHC studies
and top-down motivation
[Endo; Yanagida; Roy; Calibbi; Roszkowski. . . ]

such scenarios are viable, some might
even survive LHC14
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Comments:

CMSSM assumptions are simple but theoretically not preferred

CMSSM (and other models) cannot explain large aµ any more

Now: theory as well as experiment motivates to construct models
with more complicated mass relations, e.g. higher mass splittings
many model building studies [Endo, Hamaguchi, Ibe, Yanagida, D.P. Roy, et al]

Light particles are (and will remain) possible but
specific models will be tested at LHC14, particular
if they should also explain dark matter
[Kowalska, Roszkowski, Sessolo, Williams ’15]
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Dominik Stöckinger Representative Examples



3rd Example: large aµ for large masses
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Is it possible to explain the aµ deviation with TeV-scale SUSY?

What is the largest possible SUSY contribution to aµ?
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3rd Example: large aµ for large masses
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Idea: radiative muon mass in SUSY

mtree
µ = yµvd

set vd → 0, tanβ → ∞
[Dobrescu, Fox ’10][Altmannshofer, Straub ’10] (see also [Davies,March-russell,Mccullough ’11])
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3rd Example: large aµ for large masses
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Idea: radiative muon mass in SUSY

mtree
µ = yµvd

set vd → 0, tanβ → ∞
[Dobrescu, Fox ’10][Altmannshofer, Straub ’10] (see also [Davies,March-russell,Mccullough ’11])

MSSM-scenarios for tanβ → ∞ can be regarded as genuinely
interesting parameter regions or as simplified models which realize
radiative muon mass generation
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Large aµ in MSSM for tan β → ∞
[Bach,Park,DS,Stöckinger-Kim, ’15]

“standard case” (equal masses, 1-loop)
µR µLν̃µ

H̃+
d W̃+

H̃+
u W̃+

↑
yµ =

mµ

vd

aSUSY
µ ≈ 12× 10−10 tanβ sign(µ)

(

100GeV

MSUSY

)2
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Large aµ in MSSM for tan β → ∞
[Bach,Park,DS,Stöckinger-Kim, ’15]

actually, including higher order effects
[Marchetti,Mertens,Nierste,DS ’08]

×
µR µLν̃µ

H̃+
d W̃+

H̃+
u W̃+

↑
yµ ≈

mµ

vd+vu(1-loop)
=

y tree
µ

(1+∆µ)

aSUSY
µ ≈

12× 10−10 tanβ sign(µ)

1− 0.0018 tanβ sign(µ)

(

100GeV

MSUSY

)2
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Large aµ in MSSM for tan β → ∞

limit tanβ → ∞

aSUSY
µ ≈ − 70× 10−10

(

1000GeV

MSUSY

)2

tanβ and sign(µ) drop out, large contributions for MSUSY ∼ TeV!
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Large aµ in MSSM for tan β → ∞

limit tanβ → ∞

aSUSY
µ ≈ − 70× 10−10

(

1000GeV

MSUSY

)2

“standard” case: sign wrong!
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Large aµ in MSSM for tan β → ∞

limit tanβ → ∞

aSUSY
µ ≈ + 37× 10−10

(

1000GeV

MSUSY

)2

sign positive e.g. if |µ| ≫ MSUSY (then only B̃µ̃Lµ̃R important)

Sample TeV-scale masses:
µ M1 M2 mL mR aµ/10

−9

15 1 −1 1 1 3.01
1.3 1.3 −1.3 26 1.3 2.90
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Large aµ in MSSM for tan β → ∞

aSUSY
µ ≈ + 37× 10−10

(

1000GeV

MSUSY

)2

sign positive e.g. if |µ| ≫ MSUSY (then only B̃µ̃Lµ̃R important)

Sample TeV-scale masses:
µ M1 M2 mL mR aµ/10

−9

15 1 −1 1 1 3.01
1.3 1.3 −1.3 26 1.3 2.90

∃ models with large aµ in spite of TeV-scale masses
[also other models with radiative muon mass [Crivellin et al, Straub et al. . . ]]

not easy to detect at LHC, but large couplings⇒other effects
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4th Example: small aµ, small masses
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Questions:

Can all SUSY scenarios give large contributions?

What is the SUSY contribution with R-symmetry?
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4th Example: small aµ, small masses
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Questions:

Can all SUSY scenarios give large contributions?

What is the SUSY contribution with R-symmetry?

Opposite reaction to LHC: not less, but
more SUSY, more symmetry, more light sparticles!

possible with R-symmetry, MRSSM [Kribs, Poppitz, Weiner ’08]

sparticles charged under conserved R-charge

gauge bosons have two gauginos (R = ±1) and one scalar
superpartner

R-symmetry suppresses LHC cross sections, lighter sparticles viable
[Kribs, Martin ’10]

compatible with Higgs and LEP constraints [Diessner, Kalinowski, Kotlarski, DS ’14]
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4th Example: small aµ, small masses
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Questions:

Can all SUSY scenarios give large contributions?

What is the SUSY contribution with R-symmetry?

kills g − 2 (no tanβ enhancement)

all tanβ-enhanced contributions: ∝ µM1,2

both µ and Majorana gaugino masses forbidden by R-symmetry
predictive!
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4th Example: small aµ, small masses
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Questions:

Can all SUSY scenarios give large contributions?

What is the SUSY contribution with R-symmetry?

kills g − 2 (no tanβ enhancement)

all tanβ-enhanced contributions: ∝ µM1,2

both µ and Majorana gaugino masses forbidden by R-symmetry
predictive!

∃ well-motivated models which predict ≈ zero aµ
[other models: LHT, UED, Z’. . . ]

will be under pressure if non-zero aµ is confirmed
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Using aµ: complementarity to LHC

Many different models with
different contributions to aµ

⇓
New measurement will be
very important
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SPS benchmark points
[v.Weitershausen,Schäfer,
Stöckinger-Kim,DS ’10]

LHC Inverse Problem (300fb−1)
can’t be distinguished at LHC
[Sfitter: Adam, Kneur, Lafaye,
Plehn, Rauch, Zerwas ’10]

aµ distinguishes models

helps measure parameters
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Complementarity/correlation with µ → eγ
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LHC⊕aµ: masses and model details LFV⊕aµ: LFV parameters

H̃u W̃

H̃d W̃

µR ν̃µ ν̃e eL
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µ → eγ: correlation with g − 2 depends on scenario

10 20 30 40 50 60

2´10-5

3´10-5

4´10-5

5´10-5

6´10-5

7´10-5

8´10-5

216 304 372 429 479 525

tanΒ

 H
∆

12l
L L

L
¤

M @GeVD

M ± 30%

M ± 03%

M ± 30%

totally excluded

totally allowed

parameter regions where single diagrams dominate bounds on δLL assuming M is fixed to accommodate aµ

study correlation for fixed δLL = m2
L̃12
/
√

m2
L̃11

m2
L̃22

= 2× 10−5

◮ correlation often studied [Chacko,Kribs’01; Isidori, Mescia, Paradisi, Temes ’07]

◮ but depends on mass pattern [Kersten,Park,DS,Velasco-Sevilla ’14]

still, can constrain δLL assuming aµ and mass pattern

Dominik Stöckinger Representative Examples



Precision computations (our work and plans)

Precision computations in new physics models motivated
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Precision computations (our work and plans)

Precision computations in new physics models motivated

e.g. two-loop contributions qualitatively different

reduce theory uncertainty (e.g. from α = 1/137 or α = 1/128)

SUSY uncertainty ∼ 3× 10−10
[DS ’06]

Status:

SUSY: 8 of 9 classes of two-loop contributions known,
rest in progress [65000 diagrams computed, 1 class of counterterms missing]

2HDM: leading two-loop contributions known, rest in progress

Dominik Stöckinger Representative Examples



Outline

4 Conclusions
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Summary: aµ as a probe of new physics

New physics not excluded and still well motivated

a
N.P.,SUSY
µ very model-dependent
◮ can be O(±1 . . . 50)× 10−10

◮ different mechanisms
◮ special SUSY scenarios

tanβ → ∞, R-symmetry
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µR µLµL

H1 γ

τ

×〈H1〉

µR µLν̃L

H̃+
u W̃+

×〈H〉

New measurement will have strong impact
◮ constraints, model discriminator
◮ unique properties
◮ precise predictions (will be) available
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